Fermi-surface collapse and dynamical scaling near a quantum-critical point.

نویسندگان

  • Sven Friedemann
  • Niels Oeschler
  • Steffen Wirth
  • Cornelius Krellner
  • Christoph Geibel
  • Frank Steglich
  • Silke Paschen
  • Stefan Kirchner
  • Qimiao Si
چکیده

Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh(2)Si(2), a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes

We describe two dimensional models with a metallic Fermi surface which display quantum phase transitions controlled by strongly interacting critical field theories below their upper critical dimension. The primary examples involve transitions with a topological order parameter associated with dislocations in collinear spin density wave (“stripe”) correlations: the suppression of dislocations le...

متن کامل

Destruction of theKondo effect in amulti-channel Bose-Fermi Kondomodel

We consider the SU(N)×SU(κN) generalization of the spin-isotropic Bose-Fermi Kondo model in the limit of large N . There are three fixed points corresponding to a multi-channel non-Fermi liquid phase, a local spin-liquid phase, and a Kondo-destroying quantum critical point (QCP). We show that the QCP has strong similarities with its counterpart in the single-channel model, even though the Kondo...

متن کامل

Critical local-moment fluctuations, anomalous exponents, and omega/T scaling in the Kondo problem with a pseudogap.

Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment fluctuations can play an important role near a zero-temperature phase transition. We study such fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states vanishes as /epsilon/(r) at the Fermi energy (epsilon=0). The local spin response is described b...

متن کامل

Quantum Mott Transition and Multi-Furcating Criticality

Phenomenological theory of the Mott transition is presented. When the critical temperature of the Mott transition is much higher than the quantum degeneracy temperature, the transition is essentially described by the Ising universality class. Below the critical temperature, phase separation or first-order transition occurs. However, if the critical point is involved in the Fermi degeneracy regi...

متن کامل

Cellular dynamical mean-field theory of the periodic Anderson model

We develop a cluster dynamical mean-field theory of the periodic Anderson model in three dimensions, taking a cluster of two sites as a basic reference frame. The mean-field theory displays the basic features of the Doniach phase diagram: a paramagnetic Fermi liquid state, an antiferromagnetic state, and a transition between them. In contrast with spin-density wave theories, the transition is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 33  شماره 

صفحات  -

تاریخ انتشار 2010